Semilinear geometric optics with boundary amplification
نویسندگان
چکیده
منابع مشابه
Institute for Mathematical Physics Semilinear Geometric Optics for Generalized Solutions Semilinear Geometric Optics for Generalized Solutions
This paper is devoted to the study of nonlinear geometric optics in Colombeau algebras of generalized functions in the case of Cauchy problems for semilinear hyperbolic systems in one space variable. Extending classical results, we establish a generalized variant of nonlinear geometric optics. As an application, a nonlinear superposition principle is obtained when distributional initial data ar...
متن کاملSemilinear Geometric Optics for Generalized Solutions
This paper is devoted to the study of nonlinear geometric optics in Colombeau algebras of generalized functions in the case of Cauchy problems for semilinear hyperbolic systems in one space variable. Extending classical results, we establish a generalized variant of nonlinear geometric optics. As an application, a nonlinear superposition principle is obtained when distributional initial data ar...
متن کاملGeometric Optics Expansions with Amplification for Hyperbolic Boundary Value Problems: Linear Problems
We compute and justify rigorous geometric optics expansions for linear hyperbolic boundary value problems that do not satisfy the uniform Lopatinskii condition. We exhibit an amplification phenomenon for the reflection of small high frequency oscillations at the boundary. Our analysis has two important consequences for such hyperbolic boundary value problems. Firstly, we make precise the optima...
متن کاملAmplification of pulses in nonlinear geometric optics
In this companion paper to our study of amplification of wavetrains [CGW13], we study weakly stable semilinear hyperbolic boundary value problems with pulse data. Here weak stability means that exponentially growing modes are absent, but the so-called uniform Lopatinskii condition fails at some boundary frequency in the hyperbolic region. As a consequence of this degeneracy there is again an am...
متن کاملGeometric optics and boundary layers for Nonlinear-Schrödinger Equations
where φ0 is real-valued. We are interested in the semiclassical limit ε → 0. The nonlinear Schrödinger equation (1) appears, for instance, in optics, and also as a model for Bose-Einstein condensates, with f(ρ) = ρ − 1, and the equation is termed Gross-Pitaevskii equation, or also with f(ρ) = ρ2 (see [13]). Some more complicated nonlinearities are also used especially in low dimensions, see [12...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis & PDE
سال: 2014
ISSN: 1948-206X,2157-5045
DOI: 10.2140/apde.2014.7.551